3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Теплоемкость при постоянном давлении

Теплоемкость при постоянном объеме и теплоемкость при постоянном давлении

Пусть нагревание происходит в условиях, когда объем остается постоянным
(V = const). Соответствующая молярная теплоемкость называется теплоемкостью при постоянном объеме, или изохорической теплоемкостью, и обозначается CV:

(82)

Так как теплота при этом тратится только на изменение внутренней энергии dU, то δQ = dU и

(83)

Отсюда dU = CV dT. Уравнение закона сохранения энергии (80) можно теперь переписать в виде

Следовательно, подводимое к телу тепло расходуется на изменение температуры dT (изменение внутренней энергии) и изменение объема dV (с этим связана внешняя механическая работа).

Если при нагревании постоянным остается давление, то теплоемкость называется теплоемкостью при постоянном давлении Ср (ее можно также называть изобарической теплоемкостью):

.

Пользуясь результатами кинетической теории газов, легко вычислить молярные теплоемкости идеального газа.

Для идеального одноатомного газа, как мы видели, внутренняя энергия моля равна U = RT; значит,

. (85)

Если разделить это значение молярной теплоемкости на число молекул в грамм-молекуле, т. е на число Авогадро, то получим тот средний вклад, который каждая молекула вносит в теплоемкость газа:

.

Следовательно, при повышении температуры на 1 К энергия каждой молекулы в среднем возрастает на джоулей.

Теплоемкость Cp идеального газа при постоянном давлении больше теплоемкости CV при постоянном объеме на величину работы, которую совершает моль газа, расширяясь при нагревании на 1К. Работа эта равна . Таким образом,

. (86)

Но для моля идеального газа pV = RT, поэтому и

. (87)

Из формул (85) и (87) видно, что теплоемкость при постоянном давлении превосходит теплоемкость при постоянном объеме на величину R:

Уравнение (88) называетсяуравнением Роберта Майера. Из него вытекает физический смысл газовой постоянной:

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: На стипендию можно купить что-нибудь, но не больше. 9249 — | 7349 — или читать все.

Читать еще:  Лада Приора Седан Победа над Лямбд зонд

§ 5.6. Теплоемкости газа при постоянном объеме и постоянном давлении

При введении понятия теплоемкости мы не обращали внимание на одно существенное обстоятельство: теплоемкости зависят не только от свойств вещества, но и от процесса, при котором осуществляется теплопередача.

Если нагревать тело при постоянном давлении, то оно будет расширяться и совершать работу. Для нагревания тела на 1 К при постоянном давлении ему нужно передать большее количество теплоты, чем при таком же нагревании при постоянном объеме.

Жидкие и твердые тела расширяются при нагревании незначительно, и их теплоемкости при постоянном объеме и постоянном давлении мало различаются. Но для газов это различие существенно. С помощью первого закона термодинамики можно найти связь между теплоемкостями газа при постоянном объеме и постоянном давлении.

Теплоемкость газа при постоянном объеме Найдем молярную теплоемкость газа при постоянном объеме. Согласно определению теплоемкости

где ΔT — изменение температуры. Если процесс происходит при постоянном объеме, то эту теплоемкость обозначим через Cv. Тогда

(5.6.1)

При постоянном объеме работа не совершается. Поэтому первый закон термодинамики запишется так:

(5.6.2)

Изменение энергии одного моля достаточно разреженного (идеального) одноатомного газа равно: (см. § 4.8).

Следовательно, молярная теплоемкость при постоянном объеме одноатомного газа равна:

(5.6.3)

Теплоемкость газа при постоянном давлении

Согласно определению теплоемкости при постоянном давлении Ср

(5.6.4)

Работа, которую совершит 1 моль идеального газа, расширяющегося при постоянном давлении, равна:

(5.6.5)

* Из формулы (5.6.5) видно, что универсальная газовая постоянная численно равна работе, которую совершает 1 моль идеального газа при постоянном давлении, если температура его увеличивается на 1К.

Это следует из выражения для работы газа при постоянном давлении А’ = pΔV и уравнения состояния (для одного моля) идеального газа pV = RT.

Читать еще:  Ремонт рулевых реек своими руками видео

Внутренняя энергия идеального газа от объема не зависит. Поэтому и при постоянном давлении изменение внутренней энергии ΔU = CVΔT, как и при постоянном объеме. Применяя первый закон термодинамики, получим:

(5.6.6)

Следовательно, молярные теплоемкости идеального газа связаны соотношением

(5.6.7)

Впервые эта формула была получена Р. Майером и носит его имя.

В случае идеального одноатомного газа

(5.6.8)

Теплоемкость идеального газа при изотермическом процессе

Можно формально ввести понятие теплоемкости и при изотермическом процессе. Так как при этом процессе внутренняя энергия идеального газа не меняется, какое бы количество теплоты ему ни было передано, то теплоемкость бесконечна.

Молярная теплоемкость идеального газа при постоянном давлении больше теплоемкости при постоянном объеме на величину универсальной газовой постоянной R.

§ 5.7. Адиабатный процесс

Мы рассмотрели изотермический, изобарный и изохорный процессы. После ознакомления с первым законом термодинамики появляется возможность изучить еще один процесс,это процесс, протекающий в системе при отсутствии теплообмена с окружающими телами. (Но работу над окружающими телами система может совершать.)

Процесс в теплоизолированной системе называют адиабатным.

При адиабатном процессе Q = 0 и согласно закону (5.5.3) изменение внутренней энергии происходит только за счет совершения работы:

(5.7.1)

Конечно, нельзя окружить систему оболочкой, абсолютно исключающей теплообмен. Но в ряде случаев реальные процессы очень близки к адиабатным. Существуют оболочки, обладающие малой теплопроводностью, например двойные стенки с вакуумом между ними. Так изготовляются термосы.

Процесс можно считать адиабатным даже без теплоизолирующей оболочки, если он происходит достаточно быстро, т. е. так, чтобы за время процесса не происходило заметного теплообмена между системой и окружающими телами.

Теплоемкость при постоянном давлении

Теплоёмкость идеального газа. Уравнение Майера

Теплоёмкость тела характеризуется количеством теплоты, необходимой для нагревания этого тела на один градус:

(4.2.1)

Однако, теплоёмкость – величина неопределённая, поэтому пользуются понятиями удельной и молярной теплоёмкости.

Удельная теплоёмкостьуд) есть количество теплоты, необходимое для нагревания единицы массы вещества на 1 градус [Cуд] = Дж/К.

Для газов удобно пользоваться молярной теплоемкостью количество теплоты, необходимое для нагревания 1 моля газа на 1 градус:

(4.2.2)

Из п. 1.2 известно, что молярная масса – масса одного моля:

Теплоёмкость термодинамической системы зависит от того, как изменяется состояние системы при нагревании.

Если газ нагревать при постоянном объёме, то всё подводимое тепло идёт на нагревание газа, то есть изменение его внутренней энергии. Теплоёмкость при этом обозначается СV.

СР – теплоемкость при постоянном давлении. Если нагревать газ при постоянном давлении Р в сосуде с поршнем, то поршень поднимется на некоторую высоту h, то есть газ совершит работу (рис. 4.2).

Итак, проводимое тепло и теплоёмкость зависят от того, каким путём осуществляется передача тепла. Значит, Q и С не являются функциями состояния.

Величины СР и СV оказываются связанными простыми соотношениями. Найдём их.

Пусть мы нагреваем один моль идеального газа при постоянном объёме(dA = 0). Тогда первое начало термодинамики запишем в виде:

,(4.2.3)

Теплоемкость при постоянном объёме будет равна:

,(4.2.4)
,

Из (4.2.4) следует, что

,
,(4.2.5)

Для произвольной идеальной массы газа:

,(4.2.6)

При изобарическом процессе, кроме увеличения внутренней энергии, происходит совершение работы газом:

.
.(4.2.7)
.(4.2.8)

Из этого следует, что физический смысл универсальной газовой постоянной в том, что R – численно равна работе, совершаемой одним молем газа при нагревании на один градус в изобарическом процессе.

Используя это соотношение, Роберт Майер в 1842 г. вычислил механический эквивалент теплоты: 1 кал = 4,19 Дж.

Полезно знать формулу Майера для удельных теплоёмкостей:

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector